NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

slide1 background

NASA’s Voyager Team Focuses on Software Patch, Thrusters

slide1 background

NASA Mission Update: Voyager 2 Communications Pause

slide1 background

NASA's Voyager Will Do More Science With New Power Strategy

slide1 background

Edward Stone Retires After 50 Years as NASA Voyager's Project Scientist

slide1 background

Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

Voyager 1 distance from earth, voyager 1 distance from sun, voyager 1 one-way light time, voyager 1 cosmic ray data, voyager 2 distance from the earth, voyager 2 distance from the sun, voyager 2 one-way light time, voyager 2 cosmic ray data, what's happening now.

This artist's concept shows NASA's Voyager spacecraft.

Since November 2023, NASA’s Voyager 1 spacecraft has been sending a steady radio signal to Earth, but the signal does not contain usable data.

Engineers are working to resolve an issue with one of Voyager 1’s three onboard computers, called the flight data system (FDS).

' class=

The efforts should help extend the lifetimes of the agency's interstellar explorers.

Screenshot of the video 'Voyager at 40: Keep Reaching for the Stars'.

Download the Voyager 40th Anniversary posters.

voyager probe

NASA’s Voyager Will Do More Science With New Power Strategy

Editor’s note: Language was added in the second paragraph on May 1 to underscore that the mission will continue even after a science instrument is retired.

The plan will keep Voyager 2’s science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

voyager probe

The Voyager proof test model, shown in a space simulator chamber at JPL in 1976, was a replica of the twin Voyager space probes that launched in 1977. The model’s scan platform stretches to the right, holding several of the spacecraft’s science instruments in their deployed positions.

Launched in 1977, the Voyager 2 spacecraft is more than 12 billion miles (20 billion kilometers) from Earth, using five science instruments to study interstellar space. To help keep those instruments operating despite a diminishing power supply, the aging spacecraft has begun using a small reservoir of backup power set aside as part of an onboard safety mechanism. The move will enable the mission to postpone shutting down a science instrument until 2026, rather than this year.

Switching off a science instrument will not end the mission. After shutting off the one instrument in 2026, the probe will continue to operate four science instruments until the declining power supply requires another to be turned off. If Voyager 2 remains healthy, the engineering team anticipates the mission could potentially continue for years to come.

Voyager 2 and its twin Voyager 1 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. The probes are helping scientists answer questions about the shape of the heliosphere and its role in protecting Earth from the energetic particles and other radiation found in the interstellar environment.

“The science data that the Voyagers are returning gets more valuable the farther away from the Sun they go, so we are definitely interested in keeping as many science instruments operating as long as possible,” said Linda Spilker, Voyager’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for NASA.

Power to the Probes

Both Voyager probes power themselves with radioisotope thermoelectric generators (RTGs), which convert heat from decaying plutonium into electricity. The continual decay process means the generator produces slightly less power each year. So far, the declining power supply hasn’t impacted the mission’s science output, but to compensate for the loss, engineers have turned off heaters and other systems that are not essential to keeping the spacecraft flying.

Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs)

Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here. The RTGs provide power for the spacecraft by converting the heat generated by the decay of plutonium-238 into electricity.

With those options now exhausted on Voyager 2, one of the spacecraft’s five science instruments was next on their list. (Voyager 1 is operating one less science instrument than its twin because an instrument failed early in the mission. As a result, the decision about whether to turn off an instrument on Voyager 1 won’t come until sometime next year.)

In search of a way to avoid shutting down a Voyager 2 science instrument, the team took a closer look at a safety mechanism designed to protect the instruments in case the spacecraft’s voltage – the flow of electricity – changes significantly. Because a fluctuation in voltage could damage the instruments, Voyager is equipped with a voltage regulator that triggers a backup circuit in such an event. The circuit can access a small amount of power from the RTG that’s set aside for this purpose. Instead of reserving that power, the mission will now be using it to keep the science instruments operating.

Although the spacecraft’s voltage will not be tightly regulated as a result, even after more than 45 years in flight, the electrical systems on both probes remain relatively stable, minimizing the need for a safety net. The engineering team is also able to monitor the voltage and respond if it fluctuates too much. If the new approach works well for Voyager 2, the team may implement it on Voyager 1 as well.

Get the Latest JPL News

“Variable voltages pose a risk to the instruments, but we’ve determined that it’s a small risk, and the alternative offers a big reward of being able to keep the science instruments turned on longer,” said Suzanne Dodd, Voyager’s project manager at JPL. “We’ve been monitoring the spacecraft for a few weeks, and it seems like this new approach is working.”

The Voyager mission was originally scheduled to last only four years, sending both probes past Saturn and Jupiter. NASA extended the mission so that Voyager 2 could visit Neptune and Uranus; it is still the only spacecraft ever to have encountered the ice giants. In 1990, NASA extended the mission again, this time with the goal of sending the probes outside the heliosphere. Voyager 1 reached the boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

More About the Mission

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

NASA Logo

Voyager 1 and Voyager 2

Where are they now.

Both Voyager 1 and Voyager 2 have reached "interstellar space" and each continue their unique journey deeper into the cosmos. In NASA's Eyes on the Solar System app, you can see the actual spacecraft trajectories of the Voyagers updated every five minutes.

Mission Status

Instrument status.

This illustration shows the various instruments locations on the Voyager spacecraft.

Voyager 1 Present Position

Voyager 2 present position, voyager's grand tour: 1977 - today.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

A HI-C launches with trees in the background.

Hi-C Rocket Experiment Achieves Never-Before-Seen Look at Solar Flares

NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Hubble Hunts Visible Light Sources of X-Rays

Hubble Hunts Visible Light Sources of X-Rays

NASA Selects Students for Europa Clipper Intern Program

NASA Selects Students for Europa Clipper Intern Program

voyager probe

NASA Mission Strengthens 40-Year Friendship 

voyager probe

NASA Selects Commercial Service Studies to Enable Mars Robotic Science

Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases

Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases

Colorado River

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

Orbits and Kepler’s Laws

Orbits and Kepler’s Laws

Multiwavelength image of the Cloverleaf ORC

X-ray Satellite XMM-Newton Sees ‘Space Clover’ in a New Light

NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels

NASA/JAXA’s XRISM Mission Captures Unmatched Data With Just 36 Pixels

A scientist examines a sample through a microscope while backlit by a red and white image on the screen behind her.

Researchers Develop ‘Founding Document’ on Synthetic Cell Development

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

A person stands next to a small jet engine inside a soundproofed room.

NASA Uses Small Engine to Enhance Sustainable Jet Research

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

A stack of computer components on a white background - CGI

Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions

An astronaut aboard a space shuttle points a video camera out the window.

Tech Today: Stay Safe with Battery Testing for Space

Julia Chavez

NASA Grant Brings Students at Underserved Institutions to the Stars

voyager probe

Washington State High Schooler Wins 2024 NASA Student Art Contest

aapi_2021_22_chiao_after_landing

Asian-American and Native Hawaiian Pacific Islander Heritage Month

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Nasa’s voyager spacecraft still reaching for the stars after 40 years.

The headshot image of NASA

Humanity’s farthest and longest-lived spacecraft, Voyager 1 and 2, achieve 40 years of operation and exploration this August and September. Despite their vast distance, they continue to communicate with NASA daily, still probing the final frontier.

Their story has not only impacted generations of current and future scientists and engineers, but also Earth’s culture, including film, art and music. Each spacecraft carries a Golden Record of Earth sounds, pictures and messages. Since the spacecraft could last billions of years, these circular time capsules could one day be the only traces of human civilization.

“I believe that few missions can ever match the achievements of the Voyager spacecraft during their four decades of exploration,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate (SMD) at NASA Headquarters. “They have educated us to the unknown wonders of the universe and truly inspired humanity to continue to explore our solar system and beyond.”

The Voyagers have set numerous records in their unparalleled journeys. In 2012, Voyager 1, which launched on Sept. 5, 1977, became the only spacecraft to have entered interstellar space . Voyager 2, launched on Aug. 20, 1977, is the only spacecraft to have flown by all four outer planets – Jupiter, Saturn, Uranus and Neptune. Their numerous planetary encounters include discovering the first active volcanoes beyond Earth, on Jupiter’s moon Io ; hints of a subsurface ocean on Jupiter’s moon Europa ; the most Earth-like atmosphere in the solar system, on Saturn’s moon Titan ; the jumbled-up, icy moon Miranda at Uranus; and icy-cold geysers on Neptune’s moon Triton .

Though the spacecraft have left the planets far behind – and neither will come remotely close to another star for 40,000 years – the two probes still send back observations about conditions where our Sun’s influence diminishes and interstellar space begins.

Voyager 1, now almost 13 billion miles from Earth, travels through interstellar space northward out of the plane of the planets. The probe has informed researchers that cosmic rays, atomic nuclei accelerated to nearly the speed of light, are as much as four times more abundant in interstellar space than in the vicinity of Earth. This means the heliosphere, the bubble-like volume containing our solar system’s planets and solar wind, effectively acts as a radiation shield for the planets. Voyager 1 also hinted that the magnetic field of the local interstellar medium is wrapped around the heliosphere.

Voyager 2, now almost 11 billion miles from Earth, travels south and is expected to enter interstellar space in the next few years. The different locations of the two Voyagers allow scientists to compare right now two regions of space where the heliosphere interacts with the surrounding interstellar medium using instruments that measure charged particles, magnetic fields, low-frequency radio waves and solar wind plasma. Once Voyager 2 crosses into the interstellar medium, they will also be able to sample the medium from two different locations simultaneously.

“None of us knew, when we launched 40 years ago, that anything would still be working, and continuing on this pioneering journey,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California. “The most exciting thing they find in the next five years is likely to be something that we didn’t know was out there to be discovered.” 

The twin Voyagers have been cosmic overachievers, thanks to the foresight of mission designers. By preparing for the radiation environment at Jupiter, the harshest of all planets in our solar system, the spacecraft were well equipped for their subsequent journeys. Both Voyagers are equipped with long-lasting power supplies, as well as redundant systems that allow the spacecraft to switch to backup systems autonomously when necessary. Each Voyager carries three radioisotope thermoelectric generators, devices that use the heat energy generated from the decay of plutonium-238 – only half of it will be gone after 88 years.

Space is almost empty, so the Voyagers are not at a significant level of risk of bombardment by large objects. However, Voyager 1’s interstellar space environment is not a complete void. It’s filled with clouds of dilute material remaining from stars that exploded as supernovae millions of years ago. This material doesn’t pose a danger to the spacecraft, but is a key part of the environment that the Voyager mission is helping scientists study and characterize. 

Because the Voyagers’ power decreases by four watts per year, engineers are learning how to operate the spacecraft under ever-tighter power constraints. And to maximize the Voyagers’ life spans, they also have to consult documents written decades earlier describing commands and software, in addition to the expertise of former Voyager engineers.

“The technology is many generations old, and it takes someone with 1970s design experience to understand how the spacecraft operate and what updates can be made to permit them to continue operating today and into the future,” said Suzanne Dodd, Voyager project manager based at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

Team members estimate they will have to turn off the last science instrument by 2030. However, even after the spacecraft go silent, they’ll continue on their trajectories at their present speed of more than 30,000 mph (48,280 kilometers per hour), completing an orbit within the Milky Way every 225 million years.

The Voyager spacecraft were built by JPL, which continues to operate both. The Voyager missions are part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of SMD.

For more information about the Voyager spacecraft, visit:

Dwayne Brown / Laurie Cantillo Headquarters, Washington 202-358-1726 / 202-358-1077 [email protected]  /  [email protected] Elizabeth Landau / Jia-Rui Cook Jet Propulsion Laboratory, Pasadena, Calif. 818-354-6425 / 818-354-0724 [email protected] / [email protected]

  • Skip to main content
  • Keyboard shortcuts for audio player

Well, hello, Voyager 1! The venerable spacecraft is once again making sense

Nell Greenfieldboyce 2010

Nell Greenfieldboyce

voyager probe

Members of the Voyager team celebrate at NASA's Jet Propulsion Laboratory after receiving data about the health and status of Voyager 1 for the first time in months. NASA/JPL-Caltech hide caption

Members of the Voyager team celebrate at NASA's Jet Propulsion Laboratory after receiving data about the health and status of Voyager 1 for the first time in months.

NASA says it is once again able to get meaningful information back from the Voyager 1 probe, after months of troubleshooting a glitch that had this venerable spacecraft sending home messages that made no sense.

The Voyager 1 and Voyager 2 probes launched in 1977 on a mission to study Jupiter and Saturn but continued onward through the outer reaches of the solar system. In 2012, Voyager 1 became the first spacecraft to enter interstellar space, the previously unexplored region between the stars. (Its twin, traveling in a different direction, followed suit six years later.)

Voyager 1 had been faithfully sending back readings about this mysterious new environment for years — until November, when its messages suddenly became incoherent .

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

It was a serious problem that had longtime Voyager scientists worried that this historic space mission wouldn't be able to recover. They'd hoped to be able to get precious readings from the spacecraft for at least a few more years, until its power ran out and its very last science instrument quit working.

For the last five months, a small team at NASA's Jet Propulsion Laboratory in California has been working to fix it. The team finally pinpointed the problem to a memory chip and figured out how to restore some essential software code.

"When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have been able to check the health and status of the spacecraft," NASA stated in an update.

The usable data being returned so far concerns the workings of the spacecraft's engineering systems. In the coming weeks, the team will do more of this software repair work so that Voyager 1 will also be able to send science data, letting researchers once again see what the probe encounters as it journeys through interstellar space.

After a 12.3 billion-mile 'shout,' NASA regains full contact with Voyager 2

After a 12.3 billion-mile 'shout,' NASA regains full contact with Voyager 2

  • interstellar mission
  • Become A Member
  • Gift Membership
  • Kids Membership
  • Other Ways to Give
  • Explore Worlds
  • Defend Earth

How We Work

  • Education & Public Outreach
  • Space Policy & Advocacy
  • Science & Technology
  • Global Collaboration

Our Results

Learn how our members and community are changing the worlds.

Our citizen-funded spacecraft successfully demonstrated solar sailing for CubeSats.

Space Topics

  • Planets & Other Worlds
  • Space Missions
  • Space Policy
  • Planetary Radio
  • Space Images

The Planetary Report

The eclipse issue.

Science and splendor under the shadow.

Get Involved

Membership programs for explorers of all ages.

Get updates and weekly tools to learn, share, and advocate for space exploration.

Volunteer as a space advocate.

Support Our Mission

  • Renew Membership
  • Society Projects

The Planetary Fund

Accelerate progress in our three core enterprises — Explore Worlds, Find Life, and Defend Earth. You can support the entire fund, or designate a core enterprise of your choice.

  • Strategic Framework
  • News & Press

The Planetary Society

Know the cosmos and our place within it.

Our Mission

Empowering the world's citizens to advance space science and exploration.

  • Explore Space
  • Take Action
  • Member Community
  • Account Center
  • “Exploration is in our nature.” - Carl Sagan

The Voyager missions

Highlights Voyager 1 and Voyager 2 launched in 1977 and made a grand tour of the solar system's outer planets. They are the only functioning spacecraft in interstellar space, and they are still sending back measurements of the interstellar medium. Each spacecraft carries a copy of the golden record, a missive from Earth to any alien lifeforms that may find the probes in the future.

What are the Voyager missions?

The Voyager program consists of two spacecraft: Voyager 1 and Voyager 2. Voyager 2 was actually launched first, in August 1977, but Voyager 1 was sent on a faster trajectory when it launched about two weeks later. They are the only two functioning spacecraft currently in interstellar space, beyond the environment controlled by the sun.

Voyager 2’s path took it past Jupiter in 1979, Saturn in 1981, Uranus in 1985, and Neptune in 1989. It is the only spacecraft to have visited Uranus or Neptune, and has provided much of the information that we use to characterize them now.

Because of its higher speed and more direct trajectory, Voyager 1 overtook Voyager 2 just a few months after they launched. It visited Jupiter in 1979 and Saturn in 1980. It overtook Pioneer 10 — the only other spacecraft in interstellar space thus far — in 1998 and is now the most distant artificial object from Earth.

How the Voyagers work

The two spacecraft are identical, each with a radio dish 3.7 meters (12 feet) across to transmit data back to Earth and a set of 16 thrusters to control their orientations and point their dishes toward Earth. The thrusters run on hydrazine fuel, but the electronic components of each spacecraft are powered by thermoelectric generators that run on plutonium. Each carries 11 scientific instruments, about half of which were designed just for observing planets and have now been shut off. The instruments that are now off include several cameras and spectrometers to examine the planets, as well as two radio-based experiments. Voyager 2 now has five functioning instruments: a magnetometer, a spectrometer designed to investigate plasmas, an instrument to measure low-energy charged particles and one for cosmic rays, and one that measures plasma waves. Voyager 1 only has four of those, as its plasma spectrometer is broken.

Jupiter findings

Over the course of their grand tours of the solar system, the Voyagers took tens of thousands of images and measurements that significantly changed our understanding of the outer planets.

At Jupiter, they gave us our first detailed ideas of how the planet’s atmosphere moves and evolves, showing that the Great Red Spot was a counter-clockwise rotating storm that interacted with other, smaller storms. They were also the first missions to spot a faint, dusty ring around Jupiter. Finally, they observed some of Jupiter’s moons, discovering Io’s volcanism, finding the linear features on Europa that were among the first hints that it might have an ocean beneath its surface, and granting Ganymede the title of largest moon in the solar system, a superlative that was previously thought to belong to Saturn’s moon Titan.

Saturn findings

Next, each spacecraft flew past Saturn, where they measured the composition and structure of Saturn’s atmosphere , and Voyager 1 also peered into Titan’s thick haze. Its observations led to the idea that Titan might have liquid hydrocarbons on its surface, a hypothesis that has since been verified by other missions. When the two missions observed Saturn’s rings, they found the gaps and waves that are well-known today. Voyager 1 also spotted three previously-unknown moons orbiting Saturn: Atlas, Prometheus, and Pandora.

Uranus and Neptune findings

After this, Voyager 1 headed out of the solar system, while Voyager 2 headed toward Uranus . There, it found 11 previously-unknown moons and two previously-unknown rings. Many of the phenomena it observed on Uranus remained unexplained, such as its unusual magnetic field and an unexpected lack of major temperature changes at different latitudes.

Voyager 2’s final stop, 12 years after it left Earth, was Neptune. When it arrived , it continued its streak of finding new moons with another haul of 6 small satellites, as well as finding rings around Neptune. As it did at Uranus, it observed the planet’s composition and magnetic field. It also found volcanic vents on Neptune’s huge moon Triton before it joined Voyager 1 on the way to interstellar space.

Interstellar space

Interstellar space begins at the heliopause, where the solar wind – a flow of charged particles released by the sun – is too weak to continue pushing against the interstellar medium, and the pressure from the two balances out. Voyager 1 officially entered interstellar space in August 2012, and Voyager 2 joined it  in November 2018.

These exits were instrumental in enabling astronomers to determine where exactly the edge of interstellar space is, something that’s difficult to measure from within the solar system. They showed that interstellar space begins just over 18 billion kilometers (about 11 billion miles) from the sun. The spacecraft continue to send back data on the structure of the interstellar medium.

After its planetary encounters, Voyager 1 took the iconic “Pale Blue Dot” image , showing Earth from about 6 billion kilometers (3.7 billion miles) away. As of 2021 , Voyager 1 is about 155 astronomical units (14.4 billion miles) from Earth, and Voyager 2 is nearly 129 astronomical units (12 billion miles) away.

The golden records

Each Voyager spacecraft has a golden phonograph record affixed to its side, intended as time capsules from Earth to any extraterrestrial life that might find the probes sometime in the distant future. They are inscribed with a message from Jimmy Carter, the U.S. President at the time of launch, which reads: “This is a present from a small, distant world, a token of our sounds, our science, our images, our music, our thoughts and our feelings. We are attempting to survive our time so we may live into yours.”

The covers of the records have several images inscribed, including visual instructions on how to play them, a map of our solar system’s location with respect to a set of 14 pulsars, and a drawing of a hydrogen atom. They are plated with uranium – its rate of decay will allow any future discoverers of either of the records to calculate when they were created.

The records’ contents were selected by a committee chaired by Carl Sagan. Each contains 115 images, including scientific diagrams of the solar system and its planets, the flora and fauna of Earth, and examples of human culture. There are natural sounds, including breaking surf and birdsong, spoken greetings in 55 languages, an hour of brainwave recordings, and an eclectic selection of music ranging from Beethoven to Chuck Berry to a variety of folk music.

Learn more Voyager Mission Status Bulletin Archives Experience A Message From Earth - Inspired by the Voyager Golden Record Neptune, planet of wind and ice

Support missions like Voyager 1 and 2

Whether it's advocating, teaching, inspiring, or learning, you can do something for space, right now. Let's get to work.

For full functionality of this site it is necessary to enable JavaScript. Here are instructions on how to enable JavaScript in your web browser .

After 45 years in space, the Voyager probes are just starting out

Image: Voyager 1 Saturn

As much of the space community’s attention remains focused on the delayed Artemis rocket launch and the return to the moon, two relics of the Space Age continue to  make their way across the void between the stars, sending back valuable information to scientists on Earth. 

The Voyager 1 and Voyager 2 space probes launched 45 years ago, the first on Aug. 20, 1977  and the second on Sept. 5, and they are now the farthest human-made objects from Earth, at about three times the distance of Pluto from the Sun.

Measurements indicate both probes left the interstellar bubble of our solar system a few years ago. But they’re getting old, and so engineers have been progressively shutting down their systems in the hope that their fading batteries can provide enough power for just a few more years. After that, the probes will shut down completely, and could coast through space forever.

“The two Voyagers have become our first interstellar travelers, sending back information about a place that we’ve never visited before,” said Linda Spilker, NASA’s deputy project scientist on the Voyager missions at the Jet Propulsion Laboratory in Pasadena, California.

Image: Sounds of Earth record

It now takes about 22 hours for radio signals from Earth to cover the more than 15 billion miles to Voyager 1, the farthest probe, and another 22 hours to receive its reply. Spilker, who’s worked on the probes since the first launch in 1977, said that keeping contact with them has been a monumental effort using the largest radio telescopes of the Deep Space Network, which NASA uses to relay commands to its spacecraft.

The Voyagers were a big deal when they launched at the height of the Space Age. Their main purpose was to make the first explorations of the solar system’s gas giants and their moons — Jupiter and Saturn by both Voyager 1 and Voyager 2 in 1979 and 1981, and Uranus and Neptune by Voyager 2 in 1986 and 1989, respectively.

The high-resolution color photographs they took and the data they recorded are still crucial to scientific studies today. Their final photo was the Pale Blue Dot , a portrait of the solar system taken by Voyager 1 in 1990, at about 6 billion miles away from Earth.

After their dramatic planetary fly-bys, however, the Voyager probes began a quieter phase of their journey, heading for the very edges of our solar system and beyond. Onboard instruments that measure charged particles in space indicate Voyager 1 left the protective bubble of particles emitted by the sun in 2012, while Voyager 2 left it in 2018. That means that both probes are now technically in interstellar space — between stars — and yet they are still sending back vital data from their onboard instruments, Spilker said.

Image: Voyager

 Where the Voyager probes have led, others will follow. A panel to set the nation’s scientific priorities for the next 10 years is considering a proposal for a $3.1 billion Interstellar Probe (IP) that could reach the Voyagers’ current location in as little as 15 years. If it’s approved in 2024, the probe could be launched by 2036.

Ralph McNutt, who heads space science at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, has worked on the Voyager missions for his entire career. He witnessed the Voyager 1 launch in September 1977, and he’s now a leader of the IP project. 

“We can get to a speed of about twice that of Voyager 1, and get about twice as far before the Interstellar Probe runs out of power,” he said.

The newer probe would be much more capable than the Voyagers, which were built with 45-year-old technology, and the project’s planners now have a much better idea of what’s possible and what to expect on the journey.

The key transmitter on the new probe and its instruments, including magnetometers and spectrometers, would be many times more powerful than their 1977 equivalents. And the IP could also visit some of the mysterious Kuiper Belt objects in the outer reaches of the solar system, which are thought to be the origins of some comets, McNutt said.

Image: Jupiter's Great Red Spot

Until the Interstellar Probe gets the green light, however, the Voyagers will be humanity’s foremost representatives in interstellar space. In about 40,000 years, Voyager 1 will get relatively close to another star in the constellation Camelopardalis, while Voyager 2 will near a star in the constellation of Andromeda on its way to the giant star Sirius, which it will reach in roughly 300,000 years.

Long before then, however — in as little as 10 years — both Voyager probes will completely run out of power, Spilker said. Each probe is powered by plutonium batteries, but they’ve already started to weaken, and every few months NASA engineers order the probes to shut down a few more of their onboard systems. Their hope is that they can eke enough power out of the batteries so some of the instruments can keep working, at least until the 50th anniversary of the twin launches in 2027.

After that, who knows? 

“Fingers crossed, if everything goes as planned, we could get to the 2030s,” she said. 

Whenever their power does finally run out, the Voyager probes will serve as “silent ambassadors” to the stars, Spilker said. Each probe is carrying a record, imprinted on gold, of sounds on Earth, including a baby’s cry, a whale’s song, music by Mozart and Chuck Berry, and greetings in 55 different languages. 

“Maybe some other civilization will find them, and will want to know more about the Earth,” Spilker said. 

Tom Metcalfe writes about science and space for NBC News.

NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact

On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health.

An illustration of a spacecraft with a white disk in space.

NASA's interstellar explorer Voyager 1 is finally communicating with ground control in an understandable way again. On Saturday (April 20), Voyager 1 updated ground control about its health status for the first time in 5 months. While the Voyager 1 spacecraft still isn't sending valid science data back to Earth, it is now returning usable information about the health and operating status of its onboard engineering systems. 

Thirty-five years after its launch in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . It was followed out of our cosmic quarters by its space-faring sibling, Voyager 2 , six years later in 2018. Voyager 2, thankfully, is still operational and communicating well with Earth. 

The two spacecraft remain the only human-made objects exploring space beyond the influence of the sun. However, on Nov. 14, 2023, after 11 years of exploring interstellar space and while sitting a staggering 15 billion miles (24 billion kilometers) from Earth, Voyager 1's binary code — computer language composed of 0s and 1s that it uses to communicate with its flight team at NASA — stopped making sense.

Related: We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

In March, NASA's Voyager 1 operating team sent a digital "poke" to the spacecraft, prompting its flight data subsystem (FDS) to send a full memory readout back home.

This memory dump revealed to scientists and engineers that the "glitch" is the result of a corrupted code contained on a single chip representing around 3% of the FDS memory. The loss of this code rendered Voyager 1's science and engineering data unusable.

People, many of whom are wearing matching blue shirts, celebrating at a conference table.

The NASA team can't physically repair or replace this chip, of course, but what they can do is remotely place the affected code elsewhere in the FDS memory. Though no single section of the memory is large enough to hold this code entirely, the team can slice it into sections and store these chunks separately. To do this, they will also have to adjust the relevant storage sections to ensure the addition of this corrupted code won't cause those areas to stop operating individually, or working together as a whole. In addition to this, NASA staff will also have to ensure any references to the corrupted code's location are updated.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

On April 18, 2024, the team began sending the code to its new location in the FDS memory. This was a painstaking process, as a radio signal takes 22.5 hours to traverse the distance between Earth and Voyager 1, and it then takes another 22.5 hours to get a signal back from the craft. 

By Saturday (April 20), however, the team confirmed their modification had worked. For the first time in five months, the scientists were able to communicate with Voyager 1 and check its health. Over the next few weeks, the team will work on adjusting the rest of the FDS software and aim to recover the regions of the system that are responsible for packaging and returning vital science data from beyond the limits of the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

Boeing Starliner 1st astronaut flight: Live updates

X-ray spacecraft reveals odd 'Cloverleaf' radio circle in new light (image)

NASA astronaut and director Ellen Ochoa awarded Presidential Medal of Freedom

  • Robb62 'V'ger must contact the creator. Reply
  • Holy HannaH! Couldn't help but think that "repair" sounded extremely similar to the mechanics of DNA and the evolution of life. Reply
  • Torbjorn Larsson *Applause* indeed, thanks to the Voyager teams for the hard work! Reply
  • SpaceSpinner I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured! Reply
Admin said: On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data. NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact : Read more
evw said: I'm incredibly grateful for the persistence and dedication of the Voyagers' teams and for the amazing accomplishments that have kept these two spacecrafts operational so many years beyond their expected lifetimes. V-1 was launched when I was 25 years young; I was nearly delirious with joy. Exploring the physical universe captivated my attention while I was in elementary school and has kept me mesmerized since. I'm very emotional writing this note, thinking about what amounts to a miracle of technology and longevity in my eyes. BRAVO!!! THANK YOU EVERYONE PAST & PRESENT!!!
  • EBairead I presume it's Fortran. Well done all. Reply
SpaceSpinner said: I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured!
EBairead said: I presume it's Fortran. Well done all.
  • View All 13 Comments

Most Popular

  • 2 Happy National Astronaut Day 2024! Holiday's founder talks importance of honoring America's spaceflyers (exclusive)
  • 3 After an 'emotional rollercoaster,' NASA astronauts are ready to fly on Boeing Starliner
  • 4 Boeing Starliner 1st astronaut flight: Live updates
  • 5 X-ray spacecraft reveals odd 'Cloverleaf' radio circle in new light (image)

voyager probe

IMAGES

  1. The Voyager spacecraft: 40 years in space, surreal solar system discoveries

    voyager probe

  2. Voyager 2 probe may be on the edge of interstellar space

    voyager probe

  3. See Ya, Voyager: Probe Has Finally Entered Interstellar Space : NPR

    voyager probe

  4. NASA’s Voyager spacecraft enters interstellar space, heading out of solar system

    voyager probe

  5. NASA video shows moon ‘wobble’ that could combine with rising sea levels and storm surges to cause coastal flooding around UK in the 2030s

    voyager probe

  6. NASA contacts Voyager 2 probe for the first time since March

    voyager probe

VIDEO

  1. NASA'S Lucy Probe is Sending Weird Signals. Why are Scientists Confused?

  2. Voyager 1 Might Be Dying! 🥺

  3. where is the Voyager 2 space probe?

  4. Voyager 1 Announced that it is time to return to Earth!

  5. Voyager deep space probe: Hasegawa 1/48 scale model. Main bus detail

  6. NASA Just Admitted They’ve Found Something Terrifying With Voyager 2

COMMENTS

  1. Voyager

    Learn about the Voyager 1 and Voyager 2 spacecraft, their launch dates, elapsed time, distance from Earth and Sun, and instrument status. See the real-time trajectories of the Voyagers in the NASA Eyes on the Solar System app.

  2. Voyager program

    A poster of the planets and moons visited during the Voyager program. The Voyager program is an American scientific program that employs two interstellar probes, Voyager 1 and Voyager 2.They were launched in 1977 to take advantage of a favorable alignment of the two gas giants Jupiter and Saturn and the ice giants, Uranus and Neptune, to fly near them while collecting data for transmission ...

  3. Voyager

    Learn about the twin Voyager spacecraft that have explored Jupiter, Saturn, Uranus, Neptune and interstellar space since 1977. Find out their status, science timeline, spacecraft facts and more.

  4. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  5. Voyager

    Learn about the Voyager spacecraft, their missions, and their cosmic ray data. Find out how NASA's Voyager team is working on a software patch and thrusters to extend their lifetimes.

  6. Voyager

    Learn about the Voyager 1 and 2 probes, the only spacecraft to reach the edge of interstellar space. Explore their discoveries, images, and challenges in this improved NASA website.

  7. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Launched in 1977, Voyager 2 is the only spacecraft to explore interstellar space and carry a golden record of Earth's life. Learn about its mission, discoveries, and challenges in this article from NASA.

  8. Voyager 2

    Voyager 2 is the only spacecraft to visit all four giant planets and enter interstellar space. Learn about its mission, discoveries, instruments, and the Golden Record on board.

  9. NASA's Voyager 2 Probe Enters Interstellar Space

    Voyager 2 is the second human-made object to reach the space between the stars, after Voyager 1. It crossed the heliopause on Nov. 5, 2018, and will continue to study the interstellar medium for decades to come.

  10. Voyager turns 45: What the iconic mission taught us and what's next

    The Voyager probes' work also helped to inspire the iconic Cassini mission to Saturn. "Voyager 1's close flyby of Titan was the catalyst for the wonderful Cassini mission to Saturn and its Huygens ...

  11. Inside NASA's monthslong effort to rescue the Voyager 1 mission

    Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space. The Voyager 1 probe is the most distant human-made object in existence. After a major effort to restore ...

  12. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Launched in 1977, the twin Voyager probes are the only spacecraft to explore interstellar space and carry a golden record of Earth. See images and facts from their 45-year journey across the solar system and beyond.

  13. NASA's Voyager Will Do More Science With New Power Strategy

    The Voyager proof test model, shown in a space simulator chamber at JPL in 1976, was a replica of the twin Voyager space probes that launched in 1977. The model's scan platform stretches to the right, holding several of the spacecraft's science instruments in their deployed positions.

  14. How the Voyager probes keep going and going decades after launch

    Both Voyager probes have outlived their original missions and are exploring interstellar space more than 45 years after launch. The mission team has made clever decisions to manage the power ...

  15. Where Are They Now?

    Both Voyager 1 and Voyager 2 have reached "interstellar space" and each continue their unique journey deeper into the cosmos. In NASA's Eyes on the Solar System app, you can see the actual spacecraft trajectories of the Voyagers updated every five minutes.

  16. Voyager 1 regains communications with NASA after inventive fix

    Given Voyager 1's immense distance from Earth, it takes a radio signal about 22.5 hours to reach the probe, and another 22.5 hours for a response signal from the spacecraft to reach Earth.

  17. NASA's Voyager Spacecraft Still Reaching for the Stars After 40 Years

    The Voyagers have set numerous records in their unparalleled journeys. In 2012, Voyager 1, which launched on Sept. 5, 1977, became the only spacecraft to have entered interstellar space. Voyager 2, launched on Aug. 20, 1977, is the only spacecraft to have flown by all four outer planets - Jupiter, Saturn, Uranus and Neptune.

  18. Well, hello, Voyager 1! The venerable spacecraft is once again ...

    The Voyager 1 and Voyager 2 probes launched in 1977 on a mission to study Jupiter and Saturn but continued onward through the outer reaches of the solar system. In 2012, Voyager 1 became the first ...

  19. Voyager 1: Facts about Earth's farthest spacecraft

    Voyager 1 is the first spacecraft to travel beyond the solar system and reach interstellar space . The probe launched on Sept. 5, 1977 — about two weeks after its twin Voyager 2 — and as of ...

  20. The Voyager missions

    Learn about the two spacecraft that explored the outer planets and entered interstellar space in 1977. See stunning images, discoveries, and the golden records they carry.

  21. After 45 years in space, the Voyager probes are just starting out

    The Voyager 1 and Voyager 2 space probes launched 45 years ago, the first on Aug. 20, 1977 and the second on Sept. 5, and they are now the farthest human-made objects from Earth, at about three ...

  22. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    — NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years. On April 18, 2024, the team began sending the code to its new location in the FDS memory. This was a ...