June 14, 2024

Voyager 1 Is Back! NASA Spacecraft Safely Resumes All Science Observations

NASA’s venerable Voyager 1 spacecraft has resumed normal science operations with all four functioning instruments for the first time in more than six months

By Meghan Bartels

This artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space, on the right side of the image interstellar plasma is shown with an orange glow

Artist concept of Voyager 1.

NASA/JPL-Caltech

NASA’s beloved Voyager 1 mission is back to normal science operations for the first time in more than six months, according to agency personnel. The announcement was made after NASA received data from all four of the spacecraft’s remaining science instruments.

The venerable spacecraft launched in 1977 and passed into interstellar space in 2012 , becoming the first human-made object to accomplish that feat. Today Voyager 1 and its twin, Voyager 2, are NASA’s longest-running missions . But the title has been challenging to hold on to for spacecraft that were designed to operate for just four years. The aging probes are stuck in the deep cold of outer space, their nuclear power sources are producing ever less juice, and glitches are becoming increasingly common.

Most recently, Voyager 1 faced a communications issue that began in November 2023. “We’d gone from having a conversation with Voyager, with the 1’s and 0’s containing science data, to just a dial tone,” said Linda Spilker, Voyager project scientist at NASA’s Jet Propulsion Laboratory (JPL), of the spacecraft’s troubles in an interview with Scientific American in March.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

After more than six months of long-distance troubleshooting—Voyager 1 is more than 15 billion miles from Earth, and any signal takes more than 22.5 hours to travel from our planet to the spacecraft—mission personnel have finally coaxed Voyager 1 to gather and send home data with all its remaining science instruments, according to a NASA statement .

The fix required months of analysis to track the issue to a particular chip within the spacecraft’s flight data subsystem. That chip’s code couldn’t be relocated in one fell swoop, however, so mission personnel split the information chip into chunks that could be tucked into stray corners of the rest of the system’s memory. NASA began implementing the new commands in April . And in May the agency directed the aging spacecraft to resume collecting and transmitting science data. Voyager 1’s plasma-wave subsystem and magnetometer bounced back immediately. Its cosmic-ray detector and ow-energy-charged-particles instrument required additional troubleshooting, but both are now finally operating normally, according to NASA.

And although the spacecraft is back to normal operations, the work isn’t quite over. To complete spacecraft recovery from the glitch, mission personnel still need to resynchronize timekeeping software across Voyager 1’s three computers and to maintain the recorder for the spacecraft’s plasma-wave instrument, in addition to completing smaller tasks.

Taken together, Voyager 1’s four remaining instruments offer scientists a precious glimpse of interstellar space. Voyager 1 and 2 are the only two operational spacecraft to cross out of the heliosphere, the bubble of charged particles that marks the influence of the sun across the solar system. This bubble grows and shrinks as the sun passes through its 11-year activity cycle . Inside the heliosphere, space is dominated by particles of the solar wind, while outside of it, cosmic rays reign.

Scientists never dreamed that Voyager 1 would be able to taste these exotic particles. Its primary science targets were Jupiter, Saturn, and the latter planet’s rings and largest moon, Titan—all of which the spacecraft flew past within a few years of its launch. But the mission has survived every challenge to continue trekking through the solar system and into interstellar space, informing scientists about its environment along the way.

Voyager 1: 'The Spacecraft That Could' Hits New Milestone

spacecraft voyager 1

Voyager 1, already the most distant human-made object in the cosmos, reaches 100 astronomical units from the sun on Tuesday, August 15 at 5:13 p.m. Eastern time (2:13 p.m. Pacific time).

News Media Contact

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0880

[email protected]

  • Share full article

Advertisement

Supported by

Voyager 1, After Major Malfunction, Is Back From the Brink, NASA Says

The farthest man-made object in space had been feared lost forever after a computer problem in November effectively rendered the 46-year-old probe useless.

spacecraft voyager 1

By Orlando Mayorquín

Several months after a grave computer problem seemed to spell the end for Voyager 1, which for nearly a half century had provided data on the outer planets and the far reaches of the solar system, NASA announced on Thursday that it had restored the spacecraft to working order.

“The spacecraft has resumed gathering information about interstellar space,” NASA said in its announcement about Voyager 1, the farthest man-made object in space.

Since the problem surfaced in November, engineers had been working to diagnose and resolve the issue, a tedious and lengthy process complicated by the fact that it takes almost two days to send and receive information from Voyager 1, which was the first man-made object ever to enter interstellar space and is currently more than 15 billion miles from Earth.

The space community had been holding its breath since last year as the prospect of fixing the aging probe appeared as dire as ever.

In February, Suzanne Dodd, the Voyager mission project manager, said the problem, which hindered Voyager 1’s ability to send coherent engineering and science data back to Earth, was “the most serious issue” the probe had faced since she began leading the mission in 2010.

Voyager 1 and its twin probe, Voyager 2, were launched in 1977 on a mission to explore the outer planets. NASA capitalized on a rare alignment in the solar system that enabled the probes to visit the four outer planets — Jupiter, Saturn, Uranus and Neptune — by using the gravity of each to swing to the next.

Its planetary mission a success, Voyager 1 continued its journey toward the edge of the solar system, and in 1990 it snapped a fabled photo of the Earth — a tiny speck in an infinite darkness that became known as the “pale blue dot.”

In 2012, the probe became the first to cross into interstellar space and had since, along with its twin, which followed six years later, collected data about the heliosphere, the space around the sun directly under the sun’s influence.

Perhaps as profound as the pale blue dot, each spacecraft is equipped with a golden phonograph record loaded with sound recordings and images showing humanity and life on Earth, begging to one day be discovered by another civilization.

The outlook for recovering Voyager 1 improved substantially in April , when NASA reported that it had managed to get the probe to send back “usable” data about its engineering systems and its health. That was followed by news late last month that the team had restored functionality to two of Voyager 1’s science instruments, allowing it to send back science data and continue its mission.

On Thursday, the agency announced that it had brought the remaining instruments back online and restored Voyager 1 to its normal operations.

Still, Voyager 1’s new lease on life may not last very long. NASA has previously estimated that the nuclear-powered generators on Voyager 1 and Voyager 2 were likely to die around 2025. But Voyager 1 has already demonstrated that it can beat the odds. Ms. Dodd hopes both Voyager spacecraft can reach the mission’s 50th anniversary in 2027.

Orlando Mayorquín is a breaking news reporter, based in New York, and a member of the 2023-24 Times Fellowship class , a program for journalists early in their careers. More about Orlando Mayorquín

What’s Up in Space and Astronomy

Keep track of things going on in our solar system and all around the universe..

Never miss an eclipse, a meteor shower, a rocket launch or any other 2024 event  that’s out of this world with  our space and astronomy calendar .

The company SpaceX achieved a key set of ambitious goals  on the fourth test flight of a vehicle that is central to Elon Musk’s vision of sending people to Mars.

Euclid, a European Space Agency telescope launched into space last summer, finally showed off what it’s capable of with a batch of breathtaking images  and early science results.

A dramatic blast from the sun  set off the highest-level geomagnetic storm in Earth’s atmosphere, making the northern lights visible around the world .

With the help of Google Cloud, scientists who hunt killer asteroids churned through hundreds of thousands of images of the night sky to reveal 27,500 overlooked space rocks in the solar system .

Is Pluto a planet? And what is a planet, anyway? Test your knowledge here .

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • Personal Finance
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Personal finance
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

NASA’s Voyager 1, the most distant spacecraft from Earth, is doing science again after problem

FILE - This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. The Jet Propulsion Laboratory in Southern California announced this week that Voyager 1's four scientific instruments are back in business after a technical snafu in November. (NASA via AP, File)

FILE - This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. The Jet Propulsion Laboratory in Southern California announced this week that Voyager 1’s four scientific instruments are back in business after a technical snafu in November. (NASA via AP, File)

spacecraft voyager 1

  • Copy Link copied

DALLAS (AP) — NASA’s Voyager 1, the most distant spacecraft from Earth, is sending science data again.

Voyager 1’s four instruments are back in business after a computer problem in November, the Jet Propulsion Laboratory said this week. The team first received meaningful information again from Voyager 1 in April, and recently commanded it to start studying its environment again.

Launched in 1977, Voyager 1 is drifting through interstellar space, or the space between star systems. Before reaching this region, the spacecraft discovered a thin ring around Jupiter and several of Saturn’s moons. Its instruments are designed to collect information about plasma waves, magnetic fields and particles.

Voyager 1 is over 15 billion miles (24.14 kilometers) from Earth. Its twin Voyager 2 — also in interstellar space — is more than 12 billion miles (19.31 kilometers) miles away.

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Science and Educational Media Group. The AP is solely responsible for all content.

ADITHI RAMAKRISHNAN

Subscribe or renew today

Every print subscription comes with full digital access

Science News

‘humanity’s spacecraft’ voyager 1 is back online and still exploring.

After five months of glitching, the spacecraft is talking to Earth again from interstellar space

NASA's Voyager 1 spacecraft is illustrated against and blue starry background.

The Voyager 1 spacecraft (illustrated) is back online after a few months of transmitting garbled data. It’s now poised to continue its exploration of interstellar space.

JPL-Caltech/NASA

Share this:

By Ramin Skibba

April 26, 2024 at 11:45 am

After months of challenging trouble-shooting and suspenseful waiting, Voyager 1 is once again talking to Earth.

The aging NASA spacecraft, about 24 billion kilometers from home, began transmitting garbled data in November. On April 20, NASA scientists got the probe back online after uploading new flight software to work around a chunk of onboard computer memory that had failed. They’re now receiving data about the spacecraft’s health and hope to hear from its science instruments again in a few weeks, says Suzanne Dodd, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

That means the iconic craft could be on a path to recovery — and to continue its exploration of interstellar space.

Launched in 1977, Voyager 1 briefly visited Jupiter and Saturn before eventually departing the solar system. It and its twin, Voyager 2, are the longest-operating space probes, now tasked with studying far-flung solar particles and cosmic rays. In particular, the probes have been monitoring the changing of the sun’s magnetic field and the density of plasma beyond the solar system, yielding information about the farthest reaches of the sun’s influence .

“The spacecraft is really remarkable in its longevity. It’s incredible,” Dodd says. “We want to keep Voyager going as long as possible so we have this time record of these changes.”

Voyager 1 and 2, cruising along diverging paths, made history by crossing the heliopause in 2012 and 2018 , respectively ( SN: 9/12/13; SN: 12/10/18 ). At nearly 18 billion kilometers from the sun, that’s long been considered the outer extent of our star’s magnetic field and the solar wind, the boundary before interstellar space.

Since then, Dodd says, the science team has made some surprising findings ( SN: 11/4/19 ). For one, they’ve determined that the heliosphere, the huge bubble of space dominated by the solar wind, might not be spherical but have one or two tails, making it shaped like a comet or a croissant.

And thanks to Voyager, scientists now know that, despite expectations otherwise, the sun’s magnetic field and charged particles actually remain significant even beyond the heliopause, says David McComas, a Princeton University astrophysicist not involved in the mission.

Some theories predicted a serene environment in the distant oceans of interstellar space, but the Voyagers keep passing through waves of charged particles, indicating that the solar magnetic field still holds some sway there. What’s more, the probes’ data have shown how ripples in the field form bubbles at the edge of the solar system, which is more frothy and dynamic than expected.

Other missions have begun building on Voyager’s solar physics research. These include NASA’s Interstellar Boundary Explorer, or IBEX, and the Interstellar Mapping and Acceleration Probe, or IMAP, which is set to launch next year. Earth-orbiting IBEX has been measuring high-energy particles to map the heliosphere for 15 years, whereas IMAP will orbit between the sun and Earth, giving it an uninterrupted view of the sun as it monitors the galactic cosmic rays that manage to filter through the heliosphere.

“There’s a huge synergy between the Voyagers and both IBEX and IMAP,” says McComas, principal investigator of the latter two missions. “We were all really scared when Voyager 1 stopped phoning home.”

It will be decades until another mission could accomplish what the Voyagers have done. NASA’s New Horizons soared by Pluto in 2015 and kept going ( SN:8/9/18 ). It’s heading toward the edge of the solar system, but it’s cruising slowly and will run out of power before it can collect data beyond the heliopause.

The Voyagers can fly forever, but power for their instruments is waning. Over the next few years, NASA will shut some down to conserve energy for the rest.

That means Voyager 1’s days of collecting science data are numbered. “It’s a very beloved mission,” Dodd says. “It’s humanity’s spacecraft, and we need to take care of it.”

More Stories from Science News on Space

Two people float in zero-gravity

Human spaceflight’s new era is fraught with medical and ethical questions

an illustration of planets beyond our solar system in a long curving continuous line

NASA’s James Webb Space Telescope could help solve these 5 exoplanet puzzles

An image of China's Chang'e-6 lander on the moon's surface

China’s Chang’e-6 snagged the first samples from the farside of the moon

An image showing beautiful pink and green auroras over Bonneville Salt Flats in Utah on May 10

The sun is entering solar maximum. Expect auroras, and more

A simulated image of the sun's corona during the April 8, 2024 total solar eclipse.

Here’s how predictions of the sun’s corona during the 2024 eclipse fared

Sif Mons on Venus with recent lava flow (arrow)

Venus might be as volcanically active as Earth

Forget moon walking. scientists want to give moon running a try .

An illustration shows a doughnut shape filled with galaxies

The universe may have a complex geometry — like a doughnut

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Sols 4214–4215: The Best Laid Plans…

Sols 4214–4215: The Best Laid Plans…

Hubble Observes a Cosmic Fossil

Hubble Observes a Cosmic Fossil

Voyager 1 Returning Science Data From All Four Instruments

Voyager 1 Returning Science Data From All Four Instruments

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

A large propeller plane takes off from a runway, surrounded by brown and green grasses with low buildings out of focus in the background. The plane is white with a blue stripe down the middle, and has a NASA logo on the tail. The sky is a hazy blue with some clouds.

NASA-Led Mission to Map Air Pollution Over Both U.S. Coasts

Students watch a sounding rocket launch at sunrise.

NASA’s Wallops Flight Facility to Launch Student Experiments

NASA’s Hubble Restarts Science in New Pointing Mode

NASA’s Hubble Restarts Science in New Pointing Mode

A woman with long, wavy hair and a bright smile sits at a round table during a formal event, surrounded by other attendees. She is wearing a brown cardigan and a patterned blouse.

Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement 

NASA’s Repository Supports Research of Commercial Astronaut Health  

NASA’s Repository Supports Research of Commercial Astronaut Health  

NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.

NASA Astronauts Practice Next Giant Leap for Artemis 

NASA Announces New System to Aid Disaster Response

NASA Announces New System to Aid Disaster Response

Amendment 21: A.3 Ocean Biology and Biogeochemistry: NSPIRES cover page issue and Delay of Proposal Due Date

Amendment 21: A.3 Ocean Biology and Biogeochemistry: NSPIRES cover page issue and Delay of Proposal Due Date

The Next Full Moon is the Strawberry Moon

The Next Full Moon is the Strawberry Moon

Mars Dunes

NASA’s Perseverance Fords an Ancient River to Reach Science Target

Ed Stone, former director of JPL and project scientist for the Voyager mission, died on June 9, 2024. A friend, mentor, and colleague to many, he was known for his straightforward leadership and commitment to communicating with the public.

Ed Stone, Former Director of JPL, Voyager Project Scientist, Dies

WL20 group of stars is located in the Rho Ophiuchi star-forming region

NASA’s Webb Reveals Long-Studied Star Is Actually Twins

Artist's illustration of a star system near the Sun that is close enough to Earth for exoplanets in their habitable zones to be directly imaged using future telescopes.

Coming in Hot — NASA’s Chandra Checks Habitability of Exoplanets

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

Team “Rumble Ready” from California State Polytechnic University, Pomona, comprised of (from left to right) Professor Mark Gonda, Nicole Xie, Junaid Bodla, Jordan Ragsac, Krishi Gajjar, Gerald McAllister III, and Leara Dominguez, took home first place at the 2024 Gateways to Blue Skies Forum held May 30-31 at NASA Ames Research Center. They are standing in a row posing for the photo; the team members are wearing blue t-shirts, black pants, and tennis shoes.

Winners Announced in Gateways to Blue Skies Aeronautics Competition

Graphic shows a possible future General Electric jet engine with exposed fan blades in front of a cut-away-interior view of its core mechanisms -- all part of NASA's HyTEC research project.

NASA, Industry to Start Designing More Sustainable Jet Engine Core

Simulated Roman image full of synthetic galaxies

NASA’s Roman Mission Gets Cosmic ‘Sneak Peek’ From Supercomputers

Astronaut-packaged cheese sandwiches

Food Safety Program for Space Has Taken Over on Earth

A team from Iowa accepts its Artemis grand prize award during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.

Artemis Generation Shines During NASA’s 2024 Lunabotics Challenge 

NASA astronaut and Expedition 64 Flight Engineer Victor Glover reviews procedures on a computer for the Monoclonal Antibodies Protein Crystal Growth (PCG) experiment inside the Harmony module.

NASA Joins National Space Council in Celebration of Black Space Week

NASA Astronaut Official Portrait Frank Rubio

Astronauta de la NASA Frank Rubio

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

45 years ago: voyager 1 begins its epic journey to the outer planets and beyond, johnson space center.

Forty-five years ago, the Voyager 1 spacecraft began an epic journey that continues to this day. The second of a pair of spacecraft, Voyager 1 lifted off on Sept. 5, 1977, 16 days after its twin left on a similar voyage. NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, managed the two spacecraft on their missions to explore the outer planets. Taking advantage of a rare planetary alignment to use the gravity of one planet to redirect the spacecraft to the next, the Voyagers planned to use Jupiter’s gravity to send them on to explore Saturn and its large moon Titan. They carried sophisticated instruments to conduct their in-depth explorations of the giant planets. Both spacecraft continue to return data as they make their way out of our solar system and enter interstellar space.

voyager_1_tops_trajectories

In the 1960s, mission designers at JPL noted that the next occurrence of a once-every-175-year alignment of the outer planets would happen in the late 1970s. A spacecraft could take advantage of this opportunity to fly by Jupiter and use its gravity to bend its trajectory to visit Saturn, and repeat the process to also visit Uranus, Neptune, and Pluto. Launching several missions to visit each planet individually would take much longer and cost much more. The original plan to send two pairs of Thermoelectric Outer Planet Spacecraft on these Grand Tours proved too costly leading to its cancellation in 1971. The next year, NASA approved a scaled-down version of the project to send a pair of Mariner-class spacecraft in 1977 to explore just Jupiter and Saturn, with an expected five-year operational life. On March 7, 1977, NASA Administrator James C. Fletcher announced the renaming of these Mariner Jupiter/Saturn 1977 spacecraft as Voyager 1 and 2. Scientists held out hope that one of them could ultimately visit Uranus and Neptune, thereby fulfilling most of the original Grand Tour’s objectives – Pluto would have to wait several decades for its first visit.

voyager_1_mjs_77_artwork_1975

Each Voyager carried a suite of 11 instruments to study the planets during each encounter and to learn more about interplanetary space in the outer reaches of the solar system, including: 

  • An imaging science system consisting of narrow-angle and wide-angle cameras to photograph the planet and its satellites.
  • A radio science system to determine the planet’s physical properties.
  • An infrared interferometer spectrometer to investigate local and global energy balance and atmospheric composition.
  • An ultraviolet spectrometer to measure atmospheric properties.
  • A magnetometer to analyze the planet’s magnetic field and interaction with the solar wind.
  • A plasma spectrometer to investigate microscopic properties of plasma ions.
  • A low-energy charged particle device to measure fluxes and distributions of ions.
  • A cosmic ray detection system to determine the origin and behavior of cosmic radiation.
  • A planetary radio astronomy investigation to study radio emissions from Jupiter.
  • A photopolarimeter to measure the planet’s surface composition.
  • A plasma wave system to study the planet’s magnetosphere.

voyager_1_instruments

Voyager 1 lifted off on Sept. 5, 1977, atop a Titan IIIE-Centaur rocket from Launch Complex 41 at Cape Canaveral Air Force Station, now Cape Canaveral Space Force Station, in Florida. Two weeks after its launch, from a distance of 7.25 million miles, Voyager 1 turned its camera back toward its home planet and took the first single-frame image of the Earth-Moon system. The spacecraft successfully crossed the asteroid belt between Dec. 10, 1977, and Sept. 8, 1978.

voyager_1_earth_and_moon_from_voyager_1_1977

Although Voyager 1 launched two weeks after its twin, it traveled on a faster trajectory and arrived at Jupiter four months earlier. Voyager 1 conducted its observations of Jupiter between Jan. 6 and April 13, 1979, making its closest approach of 216,837 miles from the planet’s center on March 5. The spacecraft returned 19,000 images of the giant planet, many of Jupiter’s satellites, and confirmed the presence of a thin ring encircling it. Its other instruments returned information about Jupiter’s atmosphere and magnetic field. Jupiter’s massive gravity field bent the spacecraft’s trajectory and accelerated it toward Saturn.

voyager_1_saturn_departure_nov_16_1980_3_3_m_miles

Voyager 1 began its long-range observations of Saturn on Aug. 22, 1980, passed within 114,500 miles of the planet’s center on Nov. 12, and concluded its studies on Dec. 14. Because of its interest to scientists, mission planners chose the spacecraft’s trajectory to make a close flyby of Saturn’s largest moon Titan – the only planetary satellite with a dense atmosphere – just before the closest approach to the planet itself. This trajectory, passing over Saturn’s south pole and bending north over the plane of the ecliptic, precluded Voyager 1 from making any additional planetary encounters. The spacecraft flew 4,033 miles from Titan’s center, returning images of its unbroken orange atmosphere and high-altitude blue haze layer. During the encounter, Voyager 1 returned 16,000 photographs, imaging Saturn, its rings, many of its known satellites and discovering several new ones, while its instruments returned data about Saturn’s atmosphere and magnetic field.

voyager_1_family_portrait

On Feb. 14, 1990, more than 12 years after it began its journey from Earth and shortly before controllers  permanently turned off its cameras to conserve power, Voyager 1 spun around and pointed them back into the solar system. In a mosaic of 60 images, it captured a “family portrait” of six of the solar system’s planets, including a pale blue dot called Earth more than 3.7 billion miles away. Fittingly, these were the last pictures returned from either Voyager spacecraft. On Feb. 17, 1998, Voyager 1 became the most distant human-made object, overtaking the Pioneer 10 spacecraft on their way out of the solar system. In February 2020, to commemorate the photograph’s 30th anniversary, NASA released a remastered version of the image of Earth as Pale Blue Dot Revisited .

earth-palebluedot-6bkm-voyager1

On New Year’s Day 1990, both spacecraft officially began the Voyager Interstellar Mission as they inexorably made their escape from our solar system. On Aug. 25, 2012, Voyager 1 passed beyond the heliopause, the boundary between the heliosphere, the bubble-like region of space created by the Sun, and the interstellar medium. Its twin followed suit six years later. Today , 45 years after its launch and 14.6 billion miles from Earth, four of Voyager 1’s 11 instruments continue to return useful data, having now spent 10 years in interstellar space. Signals from the spacecraft take nearly 22 hours to reach Earth, and 22 hours for Earth-based signals to reach the spacecraft. Engineers expect that the spacecraft will continue to return data from interstellar space until about 2025 when it will no longer be able to power its systems. And just in case an alien intelligence finds it one day, Voyager 1 like its twin carries a gold-plated record that contains information about its home planet, including recordings of terrestrial sounds, music, and greetings in 55 languages. Engineers at NASA thoughtfully included Instructions on how to play the record.

voyager_1_golden_record

The voyage continues…

We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

The first spacecraft to explore beyond the solar system started spouting gibberish late last year. Now, NASA knows why.

A spacecraft with a white disk and a long metal bar against a purplish background.

NASA engineers have discovered the cause of a communications breakdown between Earth and the interstellar explorer Voyager 1. It would appear that a small portion of corrupted memory exists in one of the spacecraft's computers. 

The glitch caused Voyager 1 to send unreadable data back to Earth, and is found in the NASA spacecraft's flight data subsystem (FDS). That's the system responsible for packaging the probe's science and engineering data before the telemetry modulation unit (TMU) and radio transmitter send it back to mission control. 

The source of the issue began to reveal itself when Voyager 1 operators sent the spacecraft a "poke" on March 3, 2024. This was intended to prompt FDS to send a full memory readout back to Earth.

The readout confirmed to the NASA team that about 3% of the FDS memory had been corrupted, and that this was preventing the computer from carrying out its normal operations.

Related: NASA finds clue while solving Voyager 1's communication breakdown case

Launched in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space in 2012. Voyager 2 followed its spacecraft sibling out of the solar system in 2018, and is still operational and communicating well with  Earth.

After 11 years of interstellar exploration, in Nov. 2023, Voyager 1's binary code — the computer language it uses to communicate with Earth — stopped making sense. Its 0's and 1's didn't mean anything anymore.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

"Effectively, the call between the spacecraft and the Earth was still connected, but Voyager's 'voice' was replaced with a monotonous dial tone," Voyager 1's engineering team previously  told Space.com .

a groovy poster shows a space probe with large white satellite dish mounted on a metal frame body with various length instruments jut out. surrounding colors are gold and orange, with a dark hombre background.

The team strongly suspects this glitch is the result of a single chip that's responsible for storing part of the affected portion of the FDS memory ceasing to work.

Currently, however, NASA can’t say for sure what exactly caused that particular issue. The chip could have been struck by a high-speed energetic particle from space or, after 46 years serving Voyager 1, it may simply have worn out.

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

Voyager 1 currently sits around 15 billion miles (24 billion kilometers) from Earth, which means it takes 22.5 hours to receive a radio signal from it — and another 22.5 hours for the spacecraft to receive a response via the Deep Space Network's antennas. Solving this communication issue is thus no mean feat.

Yet, NASA scientists and engineers are optimistic they can find a way to help FDS operate normally, even without the unusable memory hardware.

Solving this issue could take weeks or even months, according to NASA — but if it is resolved, Voyager 1 should be able to resume returning science data about what lies outside the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

SpaceX launching 22 Starlink satellites from Florida June 14

Watch SpaceX's Starship Super Heavy booster splash down in this epic video

Former SpaceX employees sue company, Elon Musk for retaliation, sexual harassment

  • jcs Funny timing for this article, when I am streaming an old Star Trek movie. So, surely this didn't cause a 3 byte glitch removing the O, Y and A from Voyager's name buffer? Get it? Reply
  • bwana4swahili It is quite amazing it has lasted this long in a space environment. Reply
bwana4swahili said: It is quite amazing it has lasted this long in a space environment.
  • HankySpanky So now we know even better for next time. Perhaps a spare chipset that is not redundant but is ready to take over, stored in a protective environment. A task NASA can handle. We'll find out in 100 year or so - if humanity still exists. Reply
HankySpanky said: So now we know even better for next time. Perhaps a spare chipset that is not redundant but is ready to take over, stored in a protective environment. A task NASA can handle. We'll find out in 100 year or so - if humanity still exists.
  • Classical Motion I'm afraid it might self repair. And download galactic knowledge, then decide we are a danger. And turn around. Reply
Classical Motion said: I'm afraid it might self repair. And download galactic knowledge, then decide we are a danger. And turn around.
  • jcs ROFLOL! And a hot bald chick delivering the bad news! Reply
  • View All 8 Comments

Most Popular

  • 2 NASA telescope spots 'cosmic fireworks' and faint echos from the Milky Way's supermassive black hole
  • 3 Billion-dollar disasters have been sweeping across the US this year
  • 4 'The spacecraft really reacted great:' NASA astronauts praise Boeing Starliner’s performance (video)
  • 5 Bark! Meow! Cluck! NASA uses lasers to beam pictures of pet dogs, cats and chickens to the ISS

spacecraft voyager 1

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

The Voyager Planetary Mission

The twin spacecraft Voyager 1 and Voyager 2 were launched by NASA in separate months in the summer of 1977 from Cape Canaveral, Florida. As originally designed, the Voyagers were to conduct closeup studies of Jupiter and Saturn, Saturn's rings, and the larger moons of the two planets.

To accomplish their two-planet mission, the spacecraft were built to last five years. But as the mission went on, and with the successful achievement of all its objectives, the additional flybys of the two outermost giant planets, Uranus and Neptune, proved possible -- and irresistible to mission scientists and engineers at the Voyagers' home at the Jet Propulsion Laboratory in Pasadena, California.

As the spacecraft flew across the solar system, remote-control reprogramming was used to endow the Voyagers with greater capabilities than they possessed when they left the Earth. Their two-planet mission became four. Their five-year lifetimes stretched to 12 and more.

Eventually, between them, Voyager 1 and 2 would explore all the giant outer planets of our solar system, 48 of their moons, and the unique systems of rings and magnetic fields those planets possess.

Had the Voyager mission ended after the Jupiter and Saturn flybys alone, it still would have provided the material to rewrite astronomy textbooks. But having doubled their already ambitious itineraries, the Voyagers returned to Earth information over the years that has revolutionized the science of planetary astronomy, helping to resolve key questions while raising intriguing new ones about the origin and evolution of the planets in our solar system.

History of the Voyager Mission

The Voyager mission was designed to take advantage of a rare geometric arrangement of the outer planets in the late 1970s and the 1980s which allowed for a four-planet tour for a minimum of propellant and trip time. This layout of Jupiter, Saturn, Uranus and Neptune, which occurs about every 175 years, allows a spacecraft on a particular flight path to swing from one planet to the next without the need for large onboard propulsion systems. The flyby of each planet bends the spacecraft's flight path and increases its velocity enough to deliver it to the next destination. Using this "gravity assist" technique, first demonstrated with NASA's Mariner 10 Venus/Mercury mission in 1973-74, the flight time to Neptune was reduced from 30 years to 12.

While the four-planet mission was known to be possible, it was deemed to be too expensive to build a spacecraft that could go the distance, carry the instruments needed and last long enough to accomplish such a long mission. Thus, the Voyagers were funded to conduct intensive flyby studies of Jupiter and Saturn only. More than 10,000 trajectories were studied before choosing the two that would allow close flybys of Jupiter and its large moon Io, and Saturn and its large moon Titan; the chosen flight path for Voyager 2 also preserved the option to continue on to Uranus and Neptune.

From the NASA Kennedy Space Center at Cape Canaveral, Florida, Voyager 2 was launched first, on August 20, 1977; Voyager 1 was launched on a faster, shorter trajectory on September 5, 1977. Both spacecraft were delivered to space aboard Titan-Centaur expendable rockets.

The prime Voyager mission to Jupiter and Saturn brought Voyager 1 to Jupiter on March 5, 1979, and Saturn on November 12, 1980, followed by Voyager 2 to Jupiter on July 9, 1979, and Saturn on August 25, 1981.

Voyager 1's trajectory, designed to send the spacecraft closely past the large moon Titan and behind Saturn's rings, bent the spacecraft's path inexorably northward out of the ecliptic plane -- the plane in which most of the planets orbit the Sun. Voyager 2 was aimed to fly by Saturn at a point that would automatically send the spacecraft in the direction of Uranus.

After Voyager 2's successful Saturn encounter, it was shown that Voyager 2 would likely be able to fly on to Uranus with all instruments operating. NASA provided additional funding to continue operating the two spacecraft and authorized JPL to conduct a Uranus flyby. Subsequently, NASA also authorized the Neptune leg of the mission, which was renamed the Voyager Neptune Interstellar Mission.

Voyager 2 encountered Uranus on January 24, 1986, returning detailed photos and other data on the planet, its moons, magnetic field and dark rings. Voyager 1, meanwhile, continues to press outward, conducting studies of interplanetary space. Eventually, its instruments may be the first of any spacecraft to sense the heliopause -- the boundary between the end of the Sun's magnetic influence and the beginning of interstellar space. (Voyager 1 entered Interstellar Space on August 25, 2012.)

Following Voyager 2's closest approach to Neptune on August 25, 1989, the spacecraft flew southward, below the ecliptic plane and onto a course that will take it, too, to interstellar space. Reflecting the Voyagers' new transplanetary destinations, the project is now known as the Voyager Interstellar Mission.

Voyager 1 is now leaving the solar system, rising above the ecliptic plane at an angle of about 35 degrees at a rate of about 520 million kilometers (about 320 million miles) a year. Voyager 2 is also headed out of the solar system, diving below the ecliptic plane at an angle of about 48 degrees and a rate of about 470 million kilometers (about 290 million miles) a year.

Both spacecraft will continue to study ultraviolet sources among the stars, and the fields and particles instruments aboard the Voyagers will continue to search for the boundary between the Sun's influence and interstellar space. The Voyagers are expected to return valuable data for two or three more decades. Communications will be maintained until the Voyagers' nuclear power sources can no longer supply enough electrical energy to power critical subsystems.

The cost of the Voyager 1 and 2 missions -- including launch, mission operations from launch through the Neptune encounter and the spacecraft's nuclear batteries (provided by the Department of Energy) -- is $865 million. NASA budgeted an additional $30 million to fund the Voyager Interstellar Mission for two years following the Neptune encounter.

Voyagers 1 and 2 are identical spacecraft. Each is equipped with instruments to conduct 10 different experiments. The instruments include television cameras, infrared and ultraviolet sensors, magnetometers, plasma detectors, and cosmic-ray and charged-particle sensors. In addition, the spacecraft radio is used to conduct experiments.

The Voyagers travel too far from the Sun to use solar panels; instead, they were equipped with power sources called radioisotope thermoelectric generators (RTGs). These devices, used on other deep space missions, convert the heat produced from the natural radioactive decay of plutonium into electricity to power the spacecraft instruments, computers, radio and other systems.

The spacecraft are controlled and their data returned through the Deep Space Network (DSN), a global spacecraft tracking system operated by JPL for NASA. DSN antenna complexes are located in California's Mojave Desert; near Madrid, Spain; and in Tidbinbilla, near Canberra, Australia.

The Voyager project manager for the Interstellar Mission is George P. Textor of JPL. The Voyager project scientist is Dr. Edward C. Stone of the California Institute of Technology. The assistant project scientist for the Jupiter flyby was Dr. Arthur L. Lane, followed by Dr. Ellis D. Miner for the Saturn, Uranus and Neptune encounters. Both are with JPL.

JUPITER Voyager 1 made its closest approach to Jupiter on March 5, 1979, and Voyager 2 followed with its closest approach occurring on July 9, 1979. The first spacecraft flew within 277,400 kilometers (172,368 miles) of the planet's cloud tops, and Voyager 2 came within 650,180 kilometers (404,003 miles).

Jupiter is the largest planet in the solar system, composed mainly of hydrogen and helium, with small amounts of methane, ammonia, water vapor, traces of other compounds and a core of melted rock and ice. Colorful latitudinal bands and atmospheric clouds and storms illustrate Jupiter's dynamic weather system. The giant planet is now known to possess 16 moons. The planet completes one orbit of the Sun each 11.8 years and its day is 9 hours, 55 minutes.

Although astronomers had studied Jupiter through telescopes on Earth for centuries, scientists were surprised by many of the Voyager findings.

The Great Red Spot was revealed as a complex storm moving in a counterclockwise direction. An array of other smaller storms and eddies were found throughout the banded clouds.

Discovery of active volcanism on the satellite Io was easily the greatest unexpected discovery at Jupiter. It was the first time active volcanoes had been seen on another body in the solar system. Together, the Voyagers observed the eruption of nine volcanoes on Io, and there is evidence that other eruptions occurred between the Voyager encounters.

Plumes from the volcanoes extend to more than 300 kilometers (190 miles) above the surface. The Voyagers observed material ejected at velocities up to a kilometer per second.

Io's volcanoes are apparently due to heating of the satellite by tidal pumping. Io is perturbed in its orbit by Europa and Ganymede, two other large satellites nearby, then pulled back again into its regular orbit by Jupiter. This tug-of-war results in tidal bulging as great as 100 meters (330 feet) on Io's surface, compared with typical tidal bulges on Earth of one meter (three feet).

It appears that volcanism on Io affects the entire jovian system, in that it is the primary source of matter that pervades Jupiter's magnetosphere -- the region of space surrounding the planet influenced by the jovian magnetic field. Sulfur, oxygen and sodium, apparently erupted by Io's many volcanoes and sputtered off the surface by impact of high-energy particles, were detected as far away as the outer edge of the magnetosphere millions of miles from the planet itself.

Europa displayed a large number of intersecting linear features in the low-resolution photos from Voyager 1. At first, scientists believed the features might be deep cracks, caused by crustal rifting or tectonic processes. The closer high-resolution photos from Voyager 2, however, left scientists puzzled: The features were so lacking in topographic relief that as one scientist described them, they "might have been painted on with a felt marker." There is a possibility that Europa may be internally active due to tidal heating at a level one-tenth or less than that of Io. Europa is thought to have a thin crust (less than 30 kilometers or 18 miles thick) of water ice, possibly floating on a 50-kilometer-deep (30-mile) ocean.

Ganymede turned out to be the largest moon in the solar system, with a diameter measuring 5,276 kilometers (3,280 miles). It showed two distinct types of terrain -- cratered and grooved -- suggesting to scientists that Ganymede's entire icy crust has been under tension from global tectonic processes.

Callisto has a very old, heavily cratered crust showing remnant rings of enormous impact craters. The largest craters have apparently been erased by the flow of the icy crust over geologic time. Almost no topographic relief is apparent in the ghost remnants of the immense impact basins, identifiable only by their light color and the surrounding subdued rings of concentric ridges.

A faint, dusty ring of material was found around Jupiter. Its outer edge is 129,000 kilometers (80,000 miles) from the center of the planet, and it extends inward about 30,000 kilometers (18,000 miles).

Two new, small satellites, Adrastea and Metis, were found orbiting just outside the ring. A third new satellite, Thebe, was discovered between the orbits of Amalthea and Io.

Jupiter's rings and moons exist within an intense radiation belt of electrons and ions trapped in the planet's magnetic field. These particles and fields comprise the jovian magnetosphere, or magnetic environment, which extends three to seven million kilometers toward the Sun, and stretches in a windsock shape at least as far as Saturn's orbit -- a distance of 750 million kilometers (460 million miles).

As the magnetosphere rotates with Jupiter, it sweeps past Io and strips away about 1,000 kilograms (one ton) of material per second. The material forms a torus, a doughnut-shaped cloud of ions that glow in the ultraviolet. Some of the torus's heavy ions migrate outward, and their pressure inflates the Jovian magnetosphere, while the more energetic sulfur and oxygen ions fall along the magnetic field into the planet's atmosphere, resulting in auroras.

Io acts as an electrical generator as it moves through Jupiter's magnetic field, developing 400,000 volts across its diameter and generating an electric current of 3 million amperes that flows along the magnetic field to the planet's ionosphere.

SATURN The Voyager 1 and 2 Saturn flybys occurred nine months apart, with the closest approaches falling on November 12 and August 25, 1981. Voyager 1 flew within 64,200 kilometers (40,000 miles) of the cloud tops, while Voyager 2 came within 41,000 kilometers (26,000 miles).

Saturn is the second largest planet in the solar system. It takes 29.5 Earth years to complete one orbit of the Sun, and its day was clocked at 10 hours, 39 minutes. Saturn is known to have at least 17 moons and a complex ring system. Like Jupiter, Saturn is mostly hydrogen and helium. Its hazy yellow hue was found to be marked by broad atmospheric banding similar to but much fainter than that found on Jupiter. Close scrutiny by Voyager's imaging systems revealed long-lived ovals and other atmospheric features generally smaller than those on Jupiter.

Perhaps the greatest surprises and the most puzzles were found by the Voyagers in Saturn's rings. It is thought that the rings formed from larger moons that were shattered by impacts of comets and meteoroids. The resulting dust and boulder- to house-size particles have accumulated in a broad plane around the planet varying in density.

The irregular shapes of Saturn's eight smallest moons indicates that they too are fragments of larger bodies. Unexpected structure such as kinks and spokes were found in addition to thin rings and broad, diffuse rings not observed from Earth. Much of the elaborate structure of some of the rings is due to the gravitational effects of nearby satellites. This phenomenon is most obviously demonstrated by the relationship between the F-ring and two small moons that "shepherd" the ring material. The variation in the separation of the moons from the ring may the ring's kinked appearance. Shepherding moons were also found by Voyager 2 at Uranus.

Radial, spoke-like features in the broad B-ring were found by the Voyagers. The features are believed to be composed of fine, dust-size particles. The spokes were observed to form and dissipate in time-lapse images taken by the Voyagers. While electrostatic charging may create spokes by levitating dust particles above the ring, the exact cause of the formation of the spokes is not well understood.

Winds blow at extremely high speeds on Saturn -- up to 1,800 kilometers per hour (1,100 miles per hour). Their primarily easterly direction indicates that the winds are not confined to the top cloud layer but must extend at least 2,000 kilometers (1,200 miles) downward into the atmosphere. The characteristic temperature of the atmosphere is 95 kelvins.

Saturn holds a wide assortment of satellites in its orbit, ranging from Phoebe, a small moon that travels in a retrograde orbit and is probably a captured asteroid, to Titan, the planet-sized moon with a thick nitrogen-methane atmosphere. Titan's surface temperature and pressure are 94 kelvins (-292 Fahrenheit) and 1.5 atmospheres. Photochemistry converts some atmospheric methane to other organic molecules, such as ethane, that is thought to accumulate in lakes or oceans. Other more complex hydrocarbons form the haze particles that eventually fall to the surface, coating it with a thick layer of organic matter. The chemistry in Titan's atmosphere may strongly resemble that which occurred on Earth before life evolved.

The most active surface of any moon seen in the Saturn system was that of Enceladus. The bright surface of this moon, marked by faults and valleys, showed evidence of tectonically induced change. Voyager 1 found the moon Mimas scarred with a crater so huge that the impact that caused it nearly broke the satellite apart.

Saturn's magnetic field is smaller than Jupiter's, extending only one or two million kilometers. The axis of the field is almost perfectly aligned with the rotation axis of the planet.

URANUS In its first solo planetary flyby, Voyager 2 made its closest approach to Uranus on January 24, 1986, coming within 81,500 kilometers (50,600 miles) of the planet's cloud tops.

Uranus is the third largest planet in the solar system. It orbits the Sun at a distance of about 2.8 billion kilometers (1.7 billion miles) and completes one orbit every 84 years. The length of a day on Uranus as measured by Voyager 2 is 17 hours, 14 minutes.

Uranus is distinguished by the fact that it is tipped on its side. Its unusual position is thought to be the result of a collision with a planet-sized body early in the solar system's history. Given its odd orientation, with its polar regions exposed to sunlight or darkness for long periods, scientists were not sure what to expect at Uranus.

Voyager 2 found that one of the most striking influences of this sideways position is its effect on the tail of the magnetic field, which is itself tilted 60 degrees from the planet's axis of rotation. The magnetotail was shown to be twisted by the planet's rotation into a long corkscrew shape behind the planet.

The presence of a magnetic field at Uranus was not known until Voyager's arrival. The intensity of the field is roughly comparable to that of Earth's, though it varies much more from point to point because of its large offset from the center of Uranus. The peculiar orientation of the magnetic field suggests that the field is generated at an intermediate depth in the interior where the pressure is high enough for water to become electrically conducting.

Radiation belts at Uranus were found to be of an intensity similar to those at Saturn. The intensity of radiation within the belts is such that irradiation would quickly darken (within 100,000 years) any methane trapped in the icy surfaces of the inner moons and ring particles. This may have contributed to the darkened surfaces of the moons and ring particles, which are almost uniformly gray in color.

A high layer of haze was detected around the sunlit pole, which also was found to radiate large amounts of ultraviolet light, a phenomenon dubbed "dayglow." The average temperature is about 60 kelvins (-350 degrees Fahrenheit). Surprisingly, the illuminated and dark poles, and most of the planet, show nearly the same temperature at the cloud tops.

Voyager found 10 new moons, bringing the total number to 15. Most of the new moons are small, with the largest measuring about 150 kilometers (about 90 miles) in diameter.

The moon Miranda, innermost of the five large moons, was revealed to be one of the strangest bodies yet seen in the solar system. Detailed images from Voyager's flyby of the moon showed huge fault canyons as deep as 20 kilometers (12 miles), terraced layers, and a mixture of old and young surfaces. One theory holds that Miranda may be a reaggregration of material from an earlier time when the moon was fractured by an violent impact.

The five large moons appear to be ice-rock conglomerates like the satellites of Saturn. Titania is marked by huge fault systems and canyons indicating some degree of geologic, probably tectonic, activity in its history. Ariel has the brightest and possibly youngest surface of all the Uranian moons and also appears to have undergone geologic activity that led to many fault valleys and what seem to be extensive flows of icy material. Little geologic activity has occurred on Umbriel or Oberon, judging by their old and dark surfaces.

All nine previously known rings were studied by the spacecraft and showed the Uranian rings to be distinctly different from those at Jupiter and Saturn. The ring system may be relatively young and did not form at the same time as Uranus. Particles that make up the rings may be remnants of a moon that was broken by a high-velocity impact or torn up by gravitational effects.

NEPTUNE When Voyager flew within 5,000 kilometers (3,000 miles) of Neptune on August 25, 1989, the planet was the most distant member of the solar system from the Sun. (Pluto once again will become most distant in 1999.)

Neptune orbits the Sun every 165 years. It is the smallest of our solar system's gas giants. Neptune is now known to have eight moons, six of which were found by Voyager. The length of a Neptunian day has been determined to be 16 hours, 6.7 minutes.

Even though Neptune receives only three percent as much sunlight as Jupiter does, it is a dynamic planet and surprisingly showed several large, dark spots reminiscent of Jupiter's hurricane-like storms. The largest spot, dubbed the Great Dark Spot, is about the size of Earth and is similar to the Great Red Spot on Jupiter. A small, irregularly shaped, eastward-moving cloud was observed "scooting" around Neptune every 16 hours or so; this "scooter," as Voyager scientists called it, could be a cloud plume rising above a deeper cloud deck.

Long, bright clouds, similar to cirrus clouds on Earth, were seen high in Neptune's atmosphere. At low northern latitudes, Voyager captured images of cloud streaks casting their shadows on cloud decks below.

The strongest winds on any planet were measured on Neptune. Most of the winds there blow westward, or opposite to the rotation of the planet. Near the Great Dark Spot, winds blow up to 2,000 kilometers (1,200 miles) an hour.

The magnetic field of Neptune, like that of Uranus, turned out to be highly tilted -- 47 degrees from the rotation axis and offset at least 0.55 radii (about 13,500 kilometers or 8,500 miles) from the physical center. Comparing the magnetic fields of the two planets, scientists think the extreme orientation may be characteristic of flows in the interiors of both Uranus and Neptune -- and not the result in Uranus's case of that planet's sideways orientation, or of any possible field reversals at either planet. Voyager's studies of radio waves caused by the magnetic field revealed the length of a Neptunian day. The spacecraft also detected auroras, but much weaker than those on Earth and other planets.

Triton, the largest of the moons of Neptune, was shown to be not only the most intriguing satellite of the Neptunian system, but one of the most interesting in all the solar system. It shows evidence of a remarkable geologic history, and Voyager 2 images showed active geyser-like eruptions spewing invisible nitrogen gas and dark dust particles several kilometers into the tenuous atmosphere. Triton's relatively high density and retrograde orbit offer strong evidence that Triton is not an original member of Neptune's family but is a captured object. If that is the case, tidal heating could have melted Triton in its originally eccentric orbit, and the moon might even have been liquid for as long as one billion years after its capture by Neptune.

An extremely thin atmosphere extends about 800 kilometer (500 miles) above Triton's surface. Nitrogen ice particles may form thin clouds a few kilometers above the surface. The atmospheric pressure at the surface is about 14 microbars, 1/70,000th the surface pressure on Earth. The surface temperature is about 38 kelvins (-391 degrees Fahrenheit) the coldest temperature of any body known in the solar system.

The new moons found at Neptune by Voyager are all small and remain close to Neptune's equatorial plane. Names for the new moons were selected from mythology's water deities by the International Astronomical Union, they are: Naiad, Thalassa, Despina, Galatea, Larissa, Proteus.

Voyager 2 solved many of the questions scientists had about Neptune's rings. Searches for "ring arcs," or partial rings, showed that Neptune's rings actually are complete, but are so diffuse and the material in them so fine that they could not be fully resolved from Earth. From the outermost in, the rings have been designated Adams, Plateau, Le Verrier and Galle.

Interstellar Mission

The spacecraft are continuing to return data about interplanetary space and some of our stellar neighbors near the edges of the Milky Way.

As the Voyagers cruise gracefully in the solar wind, their fields, particles and waves instruments are studying the space around them. In May 1993, scientists concluded that the plasma wave experiment was picking up radio emissions that originate at the heliopause -- the outer edge of our solar system.

The heliopause is the outermost boundary of the solar wind, where the interstellar medium restricts the outward flow of the solar wind and confines it within a magnetic bubble called the heliosphere. The solar wind is made up of electrically charged atomic particles, composed primarily of ionized hydrogen, that stream outward from the Sun.

Exactly where the heliopause is has been one of the great unanswered questions in space physics. By studying the radio emissions, scientists now theorize the heliopause exists some 90 to 120 astronomical units (AU) from the Sun. (One AU is equal to 150 million kilometers (93 million miles), or the distance from the Earth to the Sun.

The Voyagers have also become space-based ultraviolet observatories and their unique location in the universe gives astronomers the best vantage point they have ever had for looking at celestial objects that emit ultraviolet radiation.

The Ultraviolet Spectrometer (UVS) is the only experiment on the scan platform that is still functioning. The scan platform is parked at a fixed position and is not being articulated. The Infrared Spectrometer and Radiometer (IRIS) heater was turned off to save power on Voyager 1 on December 7, 2011. On January 21, 2014 the Scan Platform Supplemental Heater was also turned off to conserve power. The IRIS heater and the Scan Platform Heater were used to keep UVS warm. The UVS temperature has dropped to below the measurement limits of the sensor; however, UVS is still operating. The scientist expect to continue to receive data from the UVS until 2016, at which time the instrument will be turned off to save power.

Yet there are several other fields and particle instruments that can continue to send back data as long as the spacecraft stay alive. They include: the cosmic ray subsystem, the low-energy charge particle instrument, the magnetometer, the plasma subsystem, the plasma wave subsystem and the planetary radio astronomy instrument. Barring any catastrophic events, JPL should be able to retrieve this information for at least the next 20 and perhaps even the next 30 years.

share this!

June 14, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Voyager 1 returning science data from all four instruments

Voyager 1 returning science data from all four instruments

NASA's Voyager 1 spacecraft is conducting normal science operations for the first time following a technical issue that arose in November 2023.

The team partially resolved the issue in April when they prompted the spacecraft to begin returning engineering data, which includes information about the health and status of the spacecraft. On May 19, the mission team executed the second step of that repair process and beamed a command to the spacecraft to begin returning science data.

Two of the four science instruments returned to their normal operating modes immediately. Two other instruments required some additional work, but now, all four are returning usable science data.

The four instruments study plasma waves , magnetic fields, and particles. Voyager 1 and Voyager 2 are the only spacecraft to directly sample interstellar space , which is the region outside the heliosphere—the protective bubble of magnetic fields and solar wind created by the sun.

While Voyager 1 is back to conducting science, additional minor work is needed to clean up the effects of the issue. Among other tasks, engineers will resynchronize timekeeping software in the spacecraft's three onboard computers so they can execute commands at the right time.

The team will also perform maintenance on the digital tape recorder, which records some data for the plasma wave instrument that is sent to Earth twice per year. (Most of the Voyagers' science data is sent directly to Earth and not recorded.)

Voyager 1 is more than 15 billion miles (24 billion kilometers) from Earth, and Voyager 2 is more than 12 billion miles (20 billion kilometers) from the planet. The probes will mark 47 years of operations later this year. They are NASA's longest-running and most-distant spacecraft. Both spacecraft flew past Jupiter and Saturn, while Voyager 2 also flew past Uranus and Neptune.

Provided by NASA

Explore further

Feedback to editors

spacecraft voyager 1

Saturday Citations: Bacterial warfare, a self-programming language model, passive cooling in the big city

17 hours ago

spacecraft voyager 1

Some CRISPR screens may be missing cancer drug targets

23 hours ago

spacecraft voyager 1

Novel photocatalyst enables efficient ester reduction with blue light

Jun 15, 2024

spacecraft voyager 1

Physicists confirm quantum entanglement persists between top quarks, the heaviest known fundamental particles

Jun 14, 2024

spacecraft voyager 1

25 years of massive fusion energy experiment data open on the 'cloud' and available to everyone

spacecraft voyager 1

Quantum entangled photons react to Earth's spin

spacecraft voyager 1

Q&A: Barrier islands and dunes protect coastlines, but how are environmental changes affecting them and adjacent land?

spacecraft voyager 1

A new weapon in the battle against antibiotic resistance: Temperature

spacecraft voyager 1

Sharks have depleted functional diversity compared to the last 66 million years, study finds

spacecraft voyager 1

Quebec lake meteorite impact yields rare rocks and evidence of extreme heat

Relevant physicsforums posts, how 'messy' are fusion reaction chains in stars.

Jun 13, 2024

Some photos of the Moon

A question regarding heliocentric latitude.

Jun 12, 2024

Very last pulse from a neutron star

Should luminosity distance be 0 at z=0.

Jun 11, 2024

Solar Activity and Space Weather Update thread

More from Astronomy and Astrophysics

Related Stories

spacecraft voyager 1

NASA's Voyager 1 resumes sending engineering updates to Earth

Apr 22, 2024

spacecraft voyager 1

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

Apr 27, 2024

spacecraft voyager 1

Engineers working to resolve issue with Voyager 1 computer

Dec 13, 2023

spacecraft voyager 1

NASA's Voyager will do more science with new power strategy

Apr 27, 2023

spacecraft voyager 1

NASA listens for Voyager 2 spacecraft after wrong command cuts contact

Jul 31, 2023

spacecraft voyager 1

NASA hears signal from Voyager 2 spacecraft after mistakenly cutting contact

Aug 1, 2023

Recommended for you

spacecraft voyager 1

Astronomers discover an Earth-sized exoplanet orbiting a nearby ultracool dwarf star

spacecraft voyager 1

NASA's Perseverance fords an ancient river to reach science target

spacecraft voyager 1

Watery planets orbiting dead stars may be good candidates for studying life—if they can survive long enough

spacecraft voyager 1

Researchers discover mysterious mini-Neptunes

spacecraft voyager 1

Coming in hot: NASA's Chandra checks habitability of exoplanets

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

NASA Logo

Voyager 1 and Voyager 2

Where are they now.

Both Voyager 1 and Voyager 2 have reached "interstellar space" and each continue their unique journey deeper into the cosmos. In NASA's Eyes on the Solar System app, you can see the actual spacecraft trajectories of the Voyagers updated every five minutes.

Mission Status

Instrument status.

This illustration shows the various instruments locations on the Voyager spacecraft.

Voyager 1 Present Position

Voyager 2 present position, voyager's grand tour: 1977 - today.

COMMENTS

  1. Voyager 1 is back online! NASA's most distant spacecraft returns data

    NASA's Voyager 1 spacecraft is fully operational for the first time since November 2023, with all four science instruments returning usable data to Earth.

  2. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin, Voyager 2.

  3. Voyager 1

    Voyager 1 discovered a thin ring around Jupiter and two new Jovian moons: Thebe and Metis. At Saturn, Voyager 1 found five new moons and a new ring called the G-ring. Voyager 1 was the first spacecraft to cross the heliosphere, the boundary where the influences from outside our solar system are stronger than those from our Sun.

  4. Voyager 1 Is Back! NASA Spacecraft Safely Resumes All Science

    And in May the agency directed the aging spacecraft to resume collecting and transmitting science data. Voyager 1's plasma-wave subsystem and magnetometer bounced back immediately. Its cosmic ...

  5. Voyager 1 Returning Science Data From All Four Instruments

    The spacecraft has resumed gathering information about interstellar space. NASA's Voyager 1 spacecraft is conducting normal science operations for the first time following a technical issue that arose in November 2023. The team partially resolved the issue in April when they prompted the spacecraft to begin returning engineering data, which includes information about the health […]

  6. Voyager 1

    About the mission. Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

  7. Voyager

    This is a real-time indicator of Voyager 1's distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  8. Voyager

    Mission Overview. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between ...

  9. Voyager

    Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018. Mission Type.

  10. Voyager 1: 'The Spacecraft That Could' Hits New Milestone

    Voyager 1 is now at the outer edge of our solar system, in an area called the heliosheath, the zone where the sun's influence wanes. This region is the outer layer of the 'bubble' surrounding the sun, and no one knows how big this bubble actually is. Voyager 1 is literally venturing into the great unknown and is approaching interstellar space.

  11. Voyager 1, After Major Malfunction, Is Back From the Brink, NASA Says

    In February, Suzanne Dodd, the Voyager mission project manager, said the problem, which hindered Voyager 1's ability to send coherent engineering and science data back to Earth, was "the most ...

  12. Voyager

    Both Voyager 1 and Voyager 2 have reached "Interstellar space" and each continue their unique journey through the Universe. In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the Voyagers, which are updated every five minutes. Distance and velocities are updated in real-time.

  13. NASA's Voyager 1, the most distant spacecraft from Earth, is doing

    FILE - This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. The Jet Propulsion Laboratory in Southern California announced this week that Voyager 1's four scientific instruments are back in business after a technical snafu in November.

  14. Voyager 1: Facts about Earth's farthest spacecraft

    Voyager 1 is the first spacecraft to travel beyond the solar system and reach interstellar space . The probe launched on Sept. 5, 1977 — about two weeks after its twin Voyager 2 — and as of ...

  15. 'Humanity's spacecraft' Voyager 1 is back online and still exploring

    The Voyager 1 spacecraft (illustrated) is back online after a few months of transmitting garbled data. It's now poised to continue its exploration of interstellar space. JPL-Caltech/NASA. By ...

  16. 45 Years Ago: Voyager 1 Begins its Epic Journey to the Outer ...

    Forty-five years ago, the Voyager 1 spacecraft began an epic journey that continues to this day. The second of a pair of spacecraft, Voyager 1 lifted off on Sept. 5, 1977, 16 days after its twin left on a similar voyage. NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, managed the two spacecraft on their missions to explore the outer planets.

  17. Voyager 1

    Voyager 1, robotic U.S. interplanetary probe launched in 1977 that visited Jupiter and Saturn and was the first spacecraft to reach interstellar space. Voyager 1 swung by Jupiter on March 5, 1979, and then headed for Saturn, which it reached on November 12, 1980.

  18. Voyager

    The identical Voyager spacecraft are three-axis stabilized systems that use celestial or gyro referenced attitude control to maintain pointing of the high-gain antennas toward Earth. ... Voyager 2 launched on August 20, 1977, from Cape Canaveral, Florida aboard a Titan-Centaur rocket. On September 5, Voyager 1 launched, also from Cape Canaveral ...

  19. Mission Overview

    The twin spacecraft Voyager 1 and Voyager 2 were launched by NASA in separate months in the summer of 1977 from Cape Canaveral, Florida. As originally designed, the Voyagers were to conduct closeup studies of Jupiter and Saturn, Saturn's rings, and the larger moons of the two planets. FAQ.

  20. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data.

  21. Voyager 1, Now Most Distant Human-made Object in Space

    At approximately 2:10 p.m. Pacific time on February 17, 1998, Voyager 1, launched more than two decades ago, will cruise beyond the Pioneer 10 spacecraft and become the most distant human-created object in space at 10.4 billion kilometers (6.5 billion miles.) The two are headed in almost opposite directions away from the Sun.

  22. We finally know why NASA's Voyager 1 spacecraft stopped communicating

    Voyager 1 currently sits around 15 billion miles (24 billion kilometers) from Earth, which means it takes 22.5 hours to receive a radio signal from it — and another 22.5 hours for the spacecraft ...

  23. Voyager

    Voyager 1, meanwhile, continues to press outward, conducting studies of interplanetary space. Eventually, its instruments may be the first of any spacecraft to sense the heliopause -- the boundary between the end of the Sun's magnetic influence and the beginning of interstellar space. (Voyager 1 entered Interstellar Space on August 25, 2012.)

  24. Voyager 1 returning science data from all four instruments

    Voyager 1 and Voyager 2 are the only spacecraft to directly sample interstellar space, which is the region outside the heliosphere—the protective bubble of magnetic fields and solar wind created ...

  25. Where Are They Now?

    Both Voyager 1 and Voyager 2 have reached "interstellar space" and each continue their unique journey deeper into the cosmos. In NASA's Eyes on the Solar System app, you can see the actual spacecraft trajectories of the Voyagers updated every five minutes.